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For Mayer's variational problem of optimum rocket flight in a Newtonian force field, equations (necessary conditions) are written 
and their analytical solutions, corresponding to motion with intermediate thrust, are obtained. When the flight time is not fixed 
and the functional of the problem does not explicitly depend on the polar angle, the solutions obtained differ from the known 
solutions. For flight with a fixed time, the solutions obtained correspond to motion along a certain spiral trajectory. Conditions 
the satisfaction of which field solutions that satisfy the necessary condition of Robbins optimality are described. The types of 
problem in which the intermediate-thrust arcs obtained can be used are determined. An example is given. © 2000 Elsevier Science 
Ltd. All rights reserved. 

It is well known that, in Mayer's variational problem of the optimum rocker trajectory in a Newtonian 
field, satisfaction of the necessary conditions of optimality reduces to integration of a system of 
fourteenth-order differential equations separately on arcs of zero thrust (ZT), intermediate thrust (IT) 
and maximum th'mst (MT) [1-3]. The IT arcs correspond to a singular solution, and their possible 
appearance in the problem gives rise to considerable difficulties. There is no general theory for the 
analysis of these arcs and their optimality [4-6]. Certain analytical solutions are known, such as spiral 
trajectories [1, 4, 7], spherical trajectories [8]~t and circular trajectories [8, 9]. However, these solutions 
provide no answer to the question of their ensuring an effective minimum. Furthermore, certain classes 
of spiral trajectories have been obtained, differing from previously known solutions and satisfying the 
necessary condition of  Robbins optimality [10]. Questions of the possibility of the existence of optimal 
IT arcs and their applicability remain open. 

In the present paper, on the basis of an analysis of the necessary conditions of optimality-a canonical 
system of equations of the variational problem and the properties of a switching function-new classes 
of analytical solutions are obtained for IT arcs. The problems of satisfying the necessary condition of 
Robbins optimality and the use of the arcs obtained to solve flight dynamics problems are investigated. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Let the equation of a rocket motion in a central Newtonian force field be given in the form [2] 

= c m M - l e -  lar-2r,  i" = v, N / =  - m  (1.1) 

where ~ is the gravitation parameter, r is the radius vector drawn from the centre of gravitation, v is 
the velocity vector, e is th~ unit thrust vector, M is the mass of the rocket, rn is the mass consumption 
per second, with the imposed constraint 0 ~< m ~ ~ ,  and c = const is the gas outflow rate. For the 
direction cosines el, e2, e3 of the thrust vector and the mass consumption per second, the following 
equalities hold [1] 

e~ + e~ + e~ = I, m ( ~ - m ) -  7 2 =0 (1.2) 

The control variables are m, el, e2, e3 and y. To simplify the notation, the phase variables will be denoted 
by xi(i = 1, ..., 7), where xl, x2 and x3 are the components of v, x4, x5 and x6 are components of r and x7 
denotes the mass. At the initial instant t = to, let the conditions xi = Xio be specified. When t = tl, the 

tP~kL Mat. Mekh. Vol. 64, No. 1, pp. 92-101, 2000. 
~tSee also Azimov, D. M., An investigation of the optimum trajectories in a central Newtonian field. Candidate dissertation, 

Moscow, 1991. 
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final conditionsxk = xkt are specified, where k = 1 . . . . .  j < 7. It is required to find values of m, el, e2, 
e 3 and y such that the xi corresponding to them satisfy equations of motion (1.1), equalities (1.2) for 
the direction cosines of the thrust vector and mass consumption per second, and the initial and final 
conditions, and that the prescribed functional 

J = J(xj+LI, xj+2j . . . . .  x n,  t~) 

takes the minimum value of those possible. 
As is well known from the general theory of the optimal trajectories of rockets in a gravitational field 

[1], analysis of the Weierstrass conditions leads to conclusions that, along the optimal trajectory, the 
thrust must be oriented in the direction of the basis vector, and the following conditions must be satisfied: 
Z ~< 0 on ZT arcs, when m = 0; X = 0 on IT arcs, where 0 < m < ~ ;  and Z ~> 0 on MT arcs, where 
m = ~ .  Here, Z = cM-l~- - ~,7 is the switching function, ~. is the magnitude of the basis vector k and ~'7 
is a factor conjugate to the mass. At the switching point of two different arcs of the vector function k, 
the vector function k itself and the function ~.7 should be continuous. Taking into account the stationarity 
and Weierstrass conditions we can write Eqs (1.1) in the form of a closed canonical system of fourteenth- 
order equations on each thrust section [2]. In the general case, this system can be written in the form 

ir=cmM-lZ-Ik-gr-2r, i ' = v ,  M=-m 

i =--~.r, i r  = B r -3k-3B r-s (kr)r, J~7 = cmM-2~" 
(1.3) 

with the Hamiltonian 

H = - g ( k r ) r  -~ + X , v + z m  

In a spherical system of coordinates (r, 0, ~5) with its origin at the centre of attraction [2], the vectors 
have the following components. 

r = ( r ,  0, 0), v=(vl ,  v2, u3) , k=(~.l,.,~,2, )~3) 

X, = (~.4, [~'P2 - L f l l  +(~'~u3 -k3v2)tg~i+~'5 cosS] r-I (~'P3-~'3vl q- ~'6) r-I)  

where kr is a vector conjugate to the radius vector [2], and ~'4, ~'5, and ~ are factors conjugate to r, O 
and ~ respectively. 

2. THE CASE W H E N  THE F L I G H T  TIME IS F I X E D  AND THE 
F U N C T I O N A L  D E P E N D S  E X P L I C I T Y  ON THE P O L A R  A N G L E  

It can be shown [2, 5] that, in the plane case, when a polar system of coordinates (r, 0) is used with its origin 
at the centre of attraction, where 0 is the angle between the radius vector and the axis 0 = 0, the canonical 
system of equations of motion (1.3) on IT arcs has the following first integrals and invariant relations 

H = ~,l(v~r -I -t.tr 2) - ~,2VlV 2 r-I +~'~l  + ~'sv 2 r-! = C 

~'PI + XP2 -2X4r  +cXln(MoM-I) - 3 C t  = Cl, Xs = C3, 

~,1~,4 + ~1~2V2 r - I  + ~,~Ji r-!  + k s Z 2 r  -| = 0  

~2 + O.lu 2r-t  _ X2 u i r - I  + ~,sr-!)2 = ~2gr-3 _ 3~2gr-3 

~.TM = ck = 6"2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where ~1 and v2 are the radial and transverse components of the velocity vector, t is the time of motion 
along the IT arc, M0 is the initial mass and C, Ca, C2 and Ca are integration constants. Eliminating the 
variable ~,4 and the difference (~,1v2 - ~,2~1 ) from (2.1), (2.3) and (2.4), and using the last relation of 
(2.2), we obtain an equation in r 

C2~.4r 4 + 6gC~2~,3r 2 + gC2~,4(32~2~, -z - l ) r +  9112~,~ = 0 

~'l =2~sin(p, ~'2 =~,cos(p 
(2.5) 
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where ~. = const is the basis vector and cp is the angle between the thrust vector and the perpendicular 
to the radius vector [1]. To solve this equation, we shall examine the following possible cases related 
to the conditions of the problem. 

1. The flight time is not fixed (C = 0) and the functional of the problem does not depend explicitly 
on the polar angle 073 = 0) [10]. In this case, analysis of relations (2.1), (2.3) and (2.6) taking into account 
the last equality of (2.2) indicates that IT arcs degenerate into ZT arcs. 

2. The flight time is not fixed (C = 0) and the functional of the problem depends explicitly on the 
polar angle (C3 # 0). In this case, with ~, = 1, the spiral trajectories obtained by Lawden [I] and Kelley 
[4] and, for any values of ~., other spiral trajectories which are obtained using the properties of the 
switching function (~ = 0, ]~ = 0) [10] are known. These solutions differ in the formulae used to 
determine the varir~bles of the canonical system of equations (1.3), apart from the formula for the radius 
vector. However, as has been shown [4-6, 10], none of these solutions satisfies the necessary optimality 
condition. 

3. The flight time is fixed (C # 0) and the functional of  the problem does not depend on the polar 
angle (C3 = 0). For this case, solutions are known in the form of spiral trajectories that differ from the 
above and satisfy the necessary Robbins optimality condition when sin ~0 < 0 and C > 0 [10]. 

4. The flight time is fixed (C # 0) and the functional of the problem depends explicitly on the polar 
angle (C3 ~ 0). This is the most general case in solving Eq. (2.5). Depending on the signs of the discriminant 

of Eq. (2.5), where s = sin cp, and for expression Cs, we have the conditions 

( a ) Q ~ 0 ,  Cs<0;  ( b ) Q < 0 ,  C s > O  

Here, the form of the solutions depends on the sign of the expression 3s 2 - 1. If  3s z - 1 < 0, the 
corresponding solutions for conditions a and b have been presented earlier [10]. When 3s 2 - 1 = 0, 
circular IT arcs occur, the solutions for which were discussed earlier [8, 9]. Other solutions of Eq. (2.5) 
are given below, revealed as a result of further studies of conditions a and b when 3s 2 - 1 > 0, taking 
into account for the signs of the expressions 2cos (~3 )  - 1 and 1 + 2cosec 2cx, where 0t is a known 
function of  the variable s. 

We introduce the notation 

' -  ~ 2 2 ' 1 1 / 2  = |-~/2l.tC; (3s - l )  | C~ (3s 2 _ ])2 
R, L 4L2cZx,(s) J - x i ( s ) '  g=1281axrcs  9 -1  

When Q ~ 0 and Cs < 0, we have 

r I = Rn(s), Xn(s) = (-2C-JlxTts3(2cosec2ot+l)))/2 

a=arctg((tgl])n13), Iotl~<n/4,  l+2cosec2c t>0 ,  
(2,6) 

When 1 + 2 cosec 2(x ~ 0, no IT arcs exist; there are no effective solutions. 
When Q < 0 and Cs > 0, we have 

r 2 = R2(s), X2(s) = (2C-)~t~3(2cos(~/3)_ I)) )/2 

2 c o s ( a / 3 ) -  1 >0, ~t = arccos~ (2.7) 

If 2 cos (~3)  - 1 ~< 0, then 

rn = R3(s), X3(s) = (2C-Ilaks3(l - 2cos(~/3  + ~/3))) jtz (2.8) 

After determining r = r(s), the remaining solutions of system of equations (1.3), taking into account 
the relation 
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(~2 _ 5 ~ , ] ) U l  +2~ ,10 .1u l  + Z l u 2 ) _ 4 ~ . t ~ . 4 r  = 0 

which is obtained from the equality ~ = 0, can be written in the form 

(2.9) 

= 2k 3w + 2C 3 (3 - s2)w + 4C3k 2 
u~ 5s2_ 3 , u2= ~ks(5s2_3) 

t = ~ [  (5s2-3)R.d~p+C4 ' 
2 "k(3w + 2C 3) 

P 
M = g o exp  ~-~ 

= I [  (R(3-s2)w+ 6k2~,)d~p+ 
0 2" rsk(3w+2C 3) Cs 

Zl =~s, ~'2 =M(, ~'4 =k(~.-w)l(~s),  ~'7 =C2 M-I 

w=C~l(3B~,2s4r-t+C2~sr+C~), R=drld{p, s=s in(p ,  k=cos{p 

P = C 2 - k  w(15s2 - 3 ) +  8s2C3 t-3C(t - C 4) 
s(s -3)  2 

(2.1o) 

Here 0 is the polar angle, and Ca and C5 are integration constants. The mass consumption per second 
can be determined from the equation z(IV) = 0 in the form 

m = [ 10~.21as 2 - u  ffr~.2 (3 - 13s 2 ) - 2 ~ , 4 r 2 ~ . ( s o l  - 3 k u  2 ) - 

--4 ~,2 r 3 + 6 XsC3u 2 r-I ]( cs~,2 r2 (3 - 5s2)) -I 
(2.11) 

Thus, expressions (2.6)-(2.8), (2.10) and (2.11) are solutions of the canonical system of equations 
(1.3) irrespective of the optimality criterion, describing motion with IT along certain spiral trajectories. 
When s < 0 and C > 0 in formula (2.6), and when s < 0 and C < 0 in formulae (2.7) and (2.8), the 
solutions obtained meet the requirements of the necessary optimality condition [5]. These 
requirements generally [3, 5] reduce to the radial component of the basis vector being negative and 
the switching function being identically equal to zero. 

For the complete determination of the feasibility of the necessary optimality condition of the solutions 
obtained, following the method described above [5, 6], we check the sign of the reactive acceleration. 
To do this, we project the first equation of system (1.3) [or (1.1)] onto the direction of the basis vector 
and obtain [1] 

fil - u2 ~ = cmM-I - I ar-2 s (2.12) 

where 

uj Z~2-Tt2ul u 2 = ¥ =  -q)+O (2.13) 
= x ' ' 7 

where u 1 and u2 are the projections of the rocket velocity onto the direction of the basis vector and 
perpendicular to it, and ¥ is the angle between the basis vector and the polar axis (0 = 0). In the solutions 
obtained above, the angle ~p is regarded as an independent variable, and therefore we shall write the 
derivatives of ul, 0 and kl in the form [2, 9] 

i~ I = aul a.._~_~, 0 = ~ ,  ~'l = ~%, ip = ~,2 ~ -  ~.4 d{pdt r r 
(2.14) 

Taking account of the relations r = r(s), (2.10), (2.13) and (2.14), and assuming that ~. = 1 [1, 11], 
from (2.12), after reduction, we obtain the following expression for the reactive acceleration 

cm I_I_~.(u_z_2 _ M  l_~ ,4 ( su2_ku l )+p_71  
a = M ' = x L a t P k  r ) 
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where  

dUldo= -(a.~w+a4C3+assk'~)(s2(3-5s2)) -2 

dw =_(alr+az_~)(r2C3)_l, _ff~=vl(Vldr ~ 4 )  

dr 2 dr 
a I = 121as3k + Cr2k + 2 C s r 7  + C~ 

a~ do 

a 2 = 3las 4 + Csr 4 + C.~r, a 3 = -24  + 40s 4 + ! 14s2k 2 + 3k 4 - 15s2k 4 

a4 = - 1 2 + 2 0 s  2 +40sZk 2, as = 2 4 - 4 0 s  2 - 3 k  2 +5s2k 2 

Calculations carr ied out  for  various values of  constants  C and C3 showed that,  for  the set o f s  values 
satisfying the inequalit ies s --- sin 0 < 0 and (3s 2 - 1) > 0, the following condit ions hold 

a > 0 ,  if - l < s < - 0 , 7 7 4 6 ; a < 0 ,  if - 0 , 7 7 4 6 < ~ s < 0  

Consequent ly ,  the classes of  solutions obta ined above satisfy the necessary optimality condit ion if 
-1  < s < -0.7746. 

3. T H E  C A S E  O F  F L I G H T  W I T H  A N O N - F I X E D  T I M E  

If, according to the condit ions of  the variat ional problem,  the flight t ime is not  fixed, then we have 
C = 0 [1]. Then,  f rom (2.5) we obtain 

r = 91.t~,2C~'2s6 (I - 3S 2 )-I (3.1) 

Note  that  this formula  was obta ined by Lawden [1] and Kelley [4] (for the case ~. = 1). 
Below, we shall find analytical solutions corresponding to (3.1) that differ f rom the solutions presented 

earlier  [1, 4, 10]. Thus,  f rom Eqs (2.3)--(2.5), taking (2.9) into account,  we have 

_ 1 - 3 s "  
X ( s v  2 - k v  , ) + G = c:~ - - = - ¢ . - -  

. 5 5 -  (3.2) 

~'4 = C~k (I - 382 )2 
27~211s 9 (3 .3)  

5s 2 - I 
k(sv I + kv 2 ) = 4C3k I - 3.12s + Xv t (3.4) 

6s ~ 2s 

Relations (3.2) and (3.4) enable  us to find the velocity componen ts  

2C3k 5C.~(1 - 5s 2 +6s  4 
u I = 3ks2(3_5s2) ,  v2 = ~ks3(3_5s 2) (3.5) 

The  remaining solutions, corresponding to (3.1), (3.3) and (3.5), can be obta ined in quadratures  

_ 81pX "~ f 3 -  I Is 2 - 10s 4 do+t ° 
t - C3 j 1 - 3s 2 

0 = 3~. 3 (3 - 23s 2 - 30s 4)(1 - 2s 2) do  + 00 
s(1 - 3s 2) 

(3.6) 

where  to and 00 are integrat ion constants. Consequently,  the first integrals, defined by the first and last 
relations of  (2.2), enable  us to de te rmine  the remaining variables 
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M = Mo e l ( s ) ,  ~'7 = C 2 M o  I exp(f (s ) )  

, [CsLk(5s 2 - 1 ) _ C ] C ~ l  (3.7) f, ts,=[ ~ - - ~  J 
The  mass  consumpt ion  pe r  second can be de te rmined  f rom the equa t ion  Z 0v) = 0. Thus,  equalities 

(3.1), (3.3) and (3.5)-(3.7) are solutions of  system (1.3) for  I T  arcs in the case of  flight with a non-fixed 
t ime as a funct ion of  the angle cp. These  arcs are spiral t rajectories  differing f rom Lawden  spirals [1] 
and o the r  previously known solutions [4, 7, 10]. The  solutions given in these papers  describe mot ions  
along different  spiral trajectories,  where  the po la r  angles have different  rates  of  change,  and the 
direct ions of  these mot ions  have dissimilar angles of  inclination to the horizontal .  Fur thermore ,  the 
actual  mass  of  the rocket  is de t e rmined  by means  of  various formulae .  

To check the necessary condi t ion of  Robbins  optimali ty,  we shall de te rmine  the sign of  the reactive 
accelerat ion.  Taking account  of  re la t ions (2.13), (2.14), (3.1), (3.3) and (3.5), and assuming that  ~. = 1, 
f rom (2.12) we obtain  

c m  C23 i - 3s 2 
a = -~ -  = [8 l~t~,4st3( 3 _ 5s3) ] x (3.8) 

x{ -90  + 943s 2 - 3768s 4 + 7620s 6 - 9430s s + 8625s I° - 4 5 0 0 s  w2 } 

Calculat ions showed that,  in the set o f  s values  satisfying the inequali t ies  s = sin 9 < 0 and 1 - 3s 2 
> 0 (see formula  (3.1)), we have a > 0 if--0.5052 < s < 0, and a < 0 i f -0 .5773  ~< s ~< --0.5052. 

There fo re ,  the class of  solut ions (3.1), (3.3), (3.5) obta ined  above satisfies the necessary opt imali ty  
cri ter ion (s < 0) [5] provided --0.5052 < s < 0, and consequent ly  is extremal ,  in unlike the Lawden  
spirals and o the r  solutions ob ta ined  ear l ier  [10]. 

Remark  1. Earlier [1, 4], in obtaining solutions for IT arcs, no account was taken of the necessary condition of 
existence of these arcs, which is expressed by the identity X --- 0 [12]. Corresponding analysis of the Lawden solutions 

(Iv) showed that they do not satisfy the equalities ~ = ~ - Z = O. It is allowance for these conditions that leads 
to degeneration of the IT arcs found by Lawden [1]. 

Remark  2. Lawden [11] obtained solutions for a spiral IT are in the case of a non-fixed time and minimization of 
mass consumption, on the assumption that the trajectory of such an arc occurs in the solution of the problem of optimal 
take-off from a circular orbit. However, in the given case, taking into account the last equality of (2.2), from the condition 
of transversality it follows that (?3 = --a//oo~ = o. Then, using the fact that ~ = -kA [10], whereA is a constant occurring 
in the Lawden solutions, we obtain A = 0, which leads to degeneration of the given sections. Consequently, the IT 
arc obtained by Lawden cannot be included in the optimal take-off trajectory from a circular orbit. 

4. T H E  C A S E  W H E R E  T H E  F U N C T I O N A L  D O E S  N O T  D E P E N D  
E X P L I C I T L Y  O N  T H E  A N G U L A R  R A N G E  O F  F L I G H T  

In the given case, f rom the condi t ion of  transversali ty,  for  the final instant  o f  t ime we obtain  [1] 

~'51 = C 3  - -  - OJ/O01 = 0 (4.1) 

Then,  for  the case o f  a fixed instant  o f  t ime (C ~ 0), the equali ty 

r = (-3~t C --w sin3q~) In (4.2) 

follows f rom Eq. (2.5), with C < 0, sin cp > 0 or  C > 0, sin cp < 0. 
Fur ther ,  the following solutions for  the arcs examined  can be ob ta ined  f rom relat ions (2.3), (2.4) and 

(2.9) 

2 kz(~p) 2 (5 - 7s 2)z(~) 
vl = 3 k ( 3 - 5 s 2 )  ' u2 = 3 L ~ ( 3 - 5 s  2) (4.3) 
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15 21 9 ( 3 - 5 s  2) 
0 = - ' ~ c t g ~ ° - - ~ - t P + 0 0 ,  t= -~J i r~2 1 z ( l_ 3 s2 ) ]  1/2 dtp+to 

z(Ip) = ( Cr2ks + 11~2 s2r -t )112 

The first integrals of (2.1) and (2.2) enable us to obtain solutions for the mass and for the variable 
conjugate to it in the form 

M = M o exp(w(tp)), 

[" k(Ss 2 - 1) 

~.7 = C2Mo t exp(-w(tp)) 

3C( t - to) - C I ]( cL )-' 
J 

(4.4) 

The mass consumption per second can now be determined by means of a time derivative of the mass. 
Consequently, system (4.2)-(4.4) is a class of analytical solutions in quadratures for spiral IT arcs in 
the case where the minimized fufictional of  the problem does not explicitly depend on the polar angle. 
Note that another ,class of IT arcs was obtained earlier [10]. Although in the given solutions the formulae 
for the radius vector are identical, the behaviour of the other variables is described by different 
expressions. Motions along the spirals indicated occur at different velocities, rates of change of the polar 
angle and changes in mass and time. If the direction of motion described by the solutions obtained earlier 
[10] makes with the perpendicular to the radius vector an angle equal to 3 q~, then the corresponding 
angle for the solul:ions obtained above will be equal to ~0.4 tp. When C > 0 and sin q~ < 0, solutions 
(4.2)-(4.4) meet  tire requirements of the necessary optimality condition. 

We shall check the sign of the reactive acceleration a. Using (2.13), (2.14) and (4.1)-(4.3), from (2.12) 
we obtain 

cm du I_dtp u 2 ~ +  ~ts (4.5) 
a = - ' M ' =  dip at r 

where 

dul d~p 5(I-sZ)s 2 
dtp dt = 3 -  5s 2 [(3 - 5s 2)sk -~ .  - 3z(l - 3s 2)] 

d z  = ~tk2 [2sk(l - 6s 2 ) r -  s 2)(I - 3s 2) d_~r] 
a~ a~0 

d_...~r = _ 9tzAk s 2 r_l 
d~ 2C 

From the numerical calculations carried out using formula (4.5) for different values of C (C > 0) and 
the variable s (s < 0, 1-3s 2 > 0), it follows that 

for 10 -6 ~< C < 1.1 x 10 --5 

a < 0 when -0.1301 < s < 0, - 0.5773 < s < -0.4101 

a > 0 when --0.4101 ~< s ~< -0.1301 

for 1.1 x 10 -5 ~< C < 10 --4 

a < 0 when -0.5773 < s <~ -0.4901 

a > 0 w h e n  -0A901 < s < 0  

for I0-4<~ C~< 4 ×  10 -'3 

a < 0 when -0,5773 < s ~< - 0.5100 

a > 0 when -0.5100 < s < 0 

and for C > 4 × 10 -3 for any s we obtain a < 0. Consequently, the solutions obtained in this section 
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satisfy the Robbins condition only for the s values determined above for which the reactive acceleration 
is posi t ive .  

5. E X A M P L E  

Using of the results obtained above, we shall examine the problem of determining the flight trajectory for a 
fixed time between prescribed coaxial elliptical orbits with eccentricities el and e2 and parameterspl andp2 in the 
central force field with IT. We shall assume zero perigee longitudes of the orbits. The characteristic velocity will 
be adopted as the minimized functional. In this case, 3.(tl) = 1, where tl is the final instant of flight. Below we shall 
show that, for certain values of el and e2, this flight can be carried out using a single IT arc. In this case, the extremal 
can consist of a sequence of ZT, IT and ZT, where the ZT arcs are arcs of limiting orbits. Consequently, the flight 
trajectory will contain two transfer points. 

To determine the flight trajectory using the solutions obtained in Section 4, we shall examine the conditions of 
continuity of  the radius vector and velocity vector at these points 

31.1. s 2 = p2 
ri 2 = - " ~ "  i ( l + e i c o s f i ) 2  (5.1) 

r , , , 2  / p.),,2 
2CiZ i (5 - 7S/z)zi - (I + e i COS./~ ) 3-5s 2 =[p~') eisinfi '  si(3:5s?)-~.Pi) 

c i = cos%, s i = sin%, zi = (Crisi + s/21J.r/-I )1/2, i = 1,2 

where]} is the true anomaly. The subscript i denotes values of the corresponding variables at the first and second 
transfer points. 

From relation (5.1) we obtain the values tpi,]} and C, where s/2 are the solutions of the equations 

o +(I -b? /4 ) / 2 ) [ -b7  (,~ + I )+  (b~e,./2): - 
-2bi(4(e2i + I ) -  b2e/2) 1/2 +4] 1'2 = a/2(1-3s/2) 

(5.2) 

where 

5_7s/2 5 - 7 s  2 
a i = ~ .  b i=  sici 

The remaining unknown quantities]} and C can be determined as follows: 

ft = arcsin -b i  + (4(e2 + I) - bi2e? )1,2 
2t, i(I - t,~ / 4) (5.3) 

C = -31as3 (I + e t cos/i ) 2 pi-I 

An investigation of relations (5.1)-(5.3) showed that the values of~i and]} depend only on e i and do not depend 
on the parameters of the limiting orbits, but they should be related by the equality 

s~ (I +e~ cos: i )  2 __ p~j 

s~ (I +e2 cos f2) 2 P~ 
(5.4) 

To determine the basis vector on the limiting orbits, we shall examine its continuity conditions at the transfer 
points [1] 

sin tpi = Bie i sin~ + Cl2i( f i .e  i)  

cos~i = Bi(I +ei cosfi) + Di + C l 2 i ( ~ , e  i)  
I +e i cosfi 

ctgt~ I + e i cosfi (5.5) 
12i = F Ill 

e i ( l + e i c o s f  i ) ei sinJ~ 

df 
Ill = sin'/~S sin 2 f(I +ecosf )  2 
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where Bi and Di are unknown constants. From equalities (5.5), Bi and Di are determined, and the basis vectors on 
the limiting orbits are thereby determined. 

To illustrate the results obtained, we considered a numerical example with specific initial and final conditions: 
el = 0.21, e2 = 0.27,pl = 9000 kin, p2 = 9732 km, o h = to2 --- 0. From relations (5.1)-(5.4), for the transfer points 
we obtain 

rl = 7628 kin, sin tO 1 = -0.4872, sinfl  = 0.5166 

r I = 7818 km, sin ~2 = -0.4953, sin f2 = 0.4225 

The Hamiltonian constant C = 0.002377. The time of motion along the IT arc amounts to 109.8 s and here the 
ratio of the characteristic velocity AV 1 to the local angular velocity V0 for the given flight is 0.6946. 

To compare the re.,.ults obtained with the results of the solution of similar problems, calculations for a flight 
were carried out using two arcs of maximum thrust (MT) and for double-impulse flight between prescribed orbits. 
For MT arcs satisfying the necessary optimality conditions, we used approximate analytical solutions in the case 
of a linear central field (where the gravitational acceleration is a linear function of the radius vector [3]). Here, 
the first transfer point lies on the initial elliptical orbit, the second and third points lie on the  transitional Kepler 
orbit and the fourth transfer point connects the transitional orbit to the final elliptical orbit. It  turned out that, for 
flight using MT arcs, the dimensionless quantity characterizing the mass consumption AV~V o -~ 0.3008, and the 
losses of gravitation acceleration at the second and third transfer points are 0.1 × 10 -6 km/s 2 and 1.2 × 10-6 km/s 2 
respectively. For Hohmann double-impulse flight we have AV/Vo = 0.2859. Consequently, to achieve the flight in 
question between the prescribed orbits, the effectiveness (in the sense of fuel consumption) of using IT is 2.3 times 
lower than in the case., of using MT arcs, and 2.4 times lower than when using impulse thrust. 

I a m  gra tefu l  to the  la te  A.  G. Az izov  and  to V. S. Novose lov  for  discussing the results.  
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